伏羲实验室用户画像组开放课题
  • 概述
  • 开放研究课题
    • 游戏玩家进入的下一个游戏场景预测
    • MMORPG游戏服务器的合并模拟预测
    • 基于游戏虚拟社交空间的玩家时空序列预测
    • 基于多源数据融合的游戏玩家状态预测
    • MMORPG中的虚拟游戏道具价格预测
    • 结合因果推断的时序预测
    • 游戏玩家流失预测
    • 游戏玩家流失原因分析
    • 基于玩家角色轨迹的游戏外挂检测
    • 基于玩家社交图谱的游戏外挂检测
    • 基于玩家行为序列的游戏外挂检测
    • 基于游戏客户端截图的FPS透视挂检测
    • 在线游戏中的半监督异常交易群体检测
    • 在线游戏中的交易网络子图匹配
    • 可解释的外挂检测
    • 个性化礼包生成与个性化礼包推荐
    • 基于玩家实时交互的游戏道具推荐
    • 游戏玩家时装商品搭配推荐
    • 基于游戏社交关系的玩家-帮会关系预测
    • 基于游戏战场中行为序列的玩家竞技风格挖掘
    • 基于游戏战场中行为序列的动作价值评估
    • 面向全局优化的游戏玩家组队匹配
    • 游戏数据场景下的稳定学习框架
    • 数据众包质量控制方法研究
  • 开放工程课题
    • 模型可解释性应用Demo制作
    • 用户行为序列可视化系统Demo制作
    • 因果分析仿真环境Demo制作
    • 基于区块链技术的数据加密和流转框架Demo制作
    • 游戏联邦学习框架Demo制作
    • 画像标签体系可视化Demo制作
    • 回报分解仿真环境Demo制作
    • 用户关系图谱可视化系统Demo制作
    • 游戏AutoML框架Demo制作
  • 游戏背景知识
    • 游戏基础
    • 游戏玩法知识
    • 游戏玩家分类
    • MMORPG元素
    • CCG元素
    • SPG元素
  • 游戏数据集描述
    • 伏羲游戏数据集
    • MMORPG1
    • ACT1
    • CCG1
    • SPG1
    • TAB1
  • 高校合作申请流程
    • 高校合作申请流程
Powered by GitBook
On this page
  • 课题背景
  • 问题定义
  • 问题挑战
  • 评价指标
  • 数据集描述
  • 相关学术论文
  • 联系我们

Was this helpful?

  1. 开放研究课题

游戏玩家进入的下一个游戏场景预测

Previous概述NextMMORPG游戏服务器的合并模拟预测

Last updated 3 years ago

Was this helpful?

课题背景

用户行为预测其中一个重要方面就是未来地点预测(Next Location Prediction),对挖掘用户行为模式,理解用户潜在目的有着重要意义。

在基于地点的用户社交服务中(Location-based Social Network),未来地点预测已经应用到社交网络、线上点评、外卖、地图等服务中,如客户推荐、商家推荐、路线规划、定向营销等。

在逆水寒等大型MMORPG游戏中,精细化地图模块会占用较大存储资源,游戏玩家在切换地图时经常遭遇客户端卡顿、切换较慢的情况,严重影响到玩家的游戏体验。

因此,精准的游戏玩家未来地图预测可以帮助游戏客户端提前预加载下一个地图资源,为玩家节省切换时间,提升玩家游戏流畅度。

相似的问题还可以迁移到移动应用使用预测问题中,在资源较为有限的智能移动设备上,通过预测用户未来使用情况进行移动应用预加载,可以大幅提升用户的使用流畅度。

问题定义

如图1所示,对于每一个游戏玩家,给定玩家信息(等级、经验等)、玩家的历史地图序列、玩家的历史动作序列(购买道具、对战、聊天等)以及玩家之间的交互关系(组队、交易等)。目标是预测玩家接下来即将进入的地图以及进入地图的时间。

图1:游戏地图预测

游戏地图预测可以定义为用户关系网络中的个性化时序建模问题。通用序列模型可以捕捉群体行为模式,发现地图之间的通用转移关系;针对个体而言,不同类型的玩家具有不同的行为特点,在不同情境下也会呈现出复杂的移动倾向;同时,用户的行为还会受到其他用户的影响,例如师徒、组队、帮会等。

游戏地图预测包含两个目标,可以形式化为一个多任务学习问题。同时地图切换时间戳存在非均匀性的特点,玩家的地图切换也可以表示为一个时序点过程。玩家之间存在复杂的关系网络,该问题也可以从动态异质图建模的角度定义问题。

问题挑战

该课题主要存在以下挑战:

  • 游戏玩家每日产生海量行为日志和切图记录,如何选取合适的训练样本是决定模型效率的关键

  • 游戏玩法存在显著周期性,如何学习和融入周期特征也是模型难点

  • 地图场景加载可能会影响玩家当前地图体验,因此停留时间的预测精度要求较高

评价指标

游戏地图预测主要通过两个指标进行评估:

  • 地图预测准确率:地图总体预测准确率,分类别的地图预测精度、召回率与F-score

  • 地图切换时间准确率:RMSE

数据集描述

数据集主要分为四个部分:用户出入图序列,用户画像数据,用户行为序列,用户关系网络。

  • 用户历史地图序列

字段
类型
描述

role_id

string

玩家id

map_id

int

地图id

timestamp

int

玩家进入地图的时间戳

  • 用户画像数据

字段
类型
描述

role_id

string

玩家id

level

int

玩家等级

role_class

int

职业

online_time

int

在线时长

total_exp

int

总经验

total_gold

int

游戏代币数量

……

  • 用户历史动作序列

字段
类型
描述

role_id

string

玩家id

action_id

int

动作id

objective_ids

string

动作对象id,多个对象id以逗号隔开

time_stamp

int

动作发生的时间戳

  • 用户关系网络(以游戏组队和师徒为例)

字段
类型
描述

role_id

string

玩家id

team_id

int

游戏队伍id

teacher_id

int

师傅id

student_id

int

徒弟id

……

相关学术论文

Runze Wu, Hao Deng, Jianrong Tao, Changjie Fan, Qi Liu, and Liang Chen. "Deep Behavior Tracing with Multi-level Aligned Temporal Embedding." In Proceedings of the 29th ACM International Conference on Information and Knowledge Management, ACM, 2020.

联系我们

有任何问题,请联系 wurunze1@corp.netease.com

Fuxi-UP团队针对该问题,从多重周期性和时间异质性角度出发,提出深度行为预测框架MATE,工作已发表在

CIKM'2020